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In natural convection in a porous medium heated from below, the convective flow in 
two dimensions becomes unsteady above a certain critical Rayleigh number and 
exhibits a fluctuating or oscillatory behaviour (depending on the confinement in the 
horizontal dimension). This fluctuating behaviour is due to a combination of the 
instability of the thermal boundary layers a t  horizontal boundaries together with a 
‘triggering’ effect of earlier disturbances. The point of the origin of the instability 
of the thermal boundary layer appears to  play a dominant role in determining the 
regularity of the fluctuating flow. This numerical study investigates the importance 
of this point of evolution and concludes that there may exist more than one oscillatory 
mode of convection, depending on its position. The investigation focuses on the 
symmetry of the flow and demonstrates that  with stable and accurate numerical 
schemes, an artificial symmetry may be imposed in trhe absence of realistic physical 
noise. If an initially symmetric perturbation is imposed the flow retains an essentially 
symmetric flow pattern with a high degree of regularity in the oscillatory behaviour. 
The imposition of an asymmetric perturbation results in a degradation of regularity. 
The appearance of the symmetric, regularly oscillatory flow is characterized by a 
symmetric (and stationary) arrangement of the points of origin of the instability of 
the upper and lower thermal boundary layers; in the case of the irregular oscillations 
the points of origin are not symmetric and their locations are not fixed. 

1. Introduction 
I n  consideration of natural convection through a confined porous medium heated 

from below, it was observed originally by Combarnous & LeFur (1969) that above a 
critical Rayleigh number R, a second mode of convection occurred. This convective 
regime produced a different Nusselt-number or Rayleigh-number dependence to the 
original convective disturbance that occurs above the first critical Rayleigh number 
R, (4n2 for an infinitely wide layer, see Lapwood 1948). The higher mode was then 
observed experimentally by Caltagirone, Cloupeau & Combarnous (1971) to be a 
fluctuating convective state, which showed a permanently unsteady behaviour as 
thermal anomalies formed, dissipated, and reformed. The same behaviour was ob- 
served in different experiments by Horne & O’Sullivan (1974) who also noted com- 
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parable effects in numerical solutions of the equations governing the flow. Further 
numerical representations were obtained by Caltagirone (1974, 1975)’ who also went 
on to determine the value of R, using the method of weighted residuals (Finlayson 
1972). The properties of R, have also been examined by Straus (1974). 

The mechanism of these effects lies in the instability of the thermal boundary layers 
over the heated or cooled horizontal boundaries. Horne & O’Sullivan (1978) examined 
the behaviour of a convecting region with only one boundary layer in order to isolate 
one set of disturbances from the other. By forcing a loss of identity to  each thermal 
anomaly in this way they concluded that the unstable boundary layer evolved 
‘thermals’ in accordance with the concept of Howard (1964) and as observed in the 
experiments of Sparrow, Husar & Goldstein (1970). It was determined however, that  
the cyclic ‘triggering ’ mechanism also influenced the behaviour of the flow by instilling 
regularity. The concept of cyclic interaction was demonstrated originally by Welander 
(1967) and Keller (1966) for periodic convective flows in fluid loops. These fluid loop 
instabilities were later seen in the experiments of Creveling et al. (1975). Moore & 
Weiss (1973) suggested that the disturbances that they observed in the case of a 
convecting fluid layer (without the porous medium) were due to triggering of distur- 
bances by their predecessors that had circulated around the cell. Krishnamurti (1970) 
also observed oscillation in the convecting-fluid layer problem and examined the 
significance of both thermal boundary-layer instability and cyclic triggering. Since 
it was determined that the Rayleigh and Prandtl numbers were well below those 
necessary for thermal instability of the boundary layer, it was concluded, as in Moore 
& Weiss (1975), that the effect was due to cyclic triggering. Horne & O’Sullivan (1978) 
report that the thermal boundary layer in the porous medium case is  a t  a Rayleigh 
number sufficient to become unstable and hence conclude that the oscillatory behaviour 
in this case is due to a combination of both triggering and thermal boundary-layer 
instability. Examination of the Rayleigh-number/fluctuation-period (R/rp)  depen- 
dence allows exclusion of the thermal boundary layer as the only mechanism of the 
behaviour. The observed dependence is 

rP N R-#, 
a somewhat longer time than R-, which would be expected if the boundary layer had 
only 00 grow to critical thickness before a disturbance was formed. The Q power rela- 
tionship is more characteristic of the circulation time (which varies to the power - 4) 
divided by the number of disturbances circulating (which varies as R),  and hence is 
indicative of triggering. The effects of triggering are of course governed by the in- 
fluence of the confining ‘ box ’ boundary conditions, and this argument may not apply 
to the unphysical ‘infinite-layer ’ case. 

In  this investigation we examine the regularity of the fluctuating behaviour again 
in a different way, since the formation of these oscillations remains of fundamental 
interest in the understanding of convective instabilities in boxes. The study of Horne 
& O’Sullivan (1974) showed that both regular and irregular flows are possible and 
suggested that regularity could be induced by restricting the location of the point of 
origin of the disturbances. In the light of more recent work comparing thermal 
boundary-layer instability and cyclic triggering, we examine the significance of the 
point of origin more closely. Introducing temperature anomalies a t  different points 
along one of the boundaries, the most likely point of evolution can be determined as 
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a point which is downstream of any perturbation causing an interruption to the 
regularity of the flow. A perturbation on or downstream of the evolution point should 
not affect the gestation of disturbances. 

The location of the point of first instability of the thermal boundary layer has thus 
been isolated (at least in cases in which i t  does not move unduly). I n  some cases this 
location is not permanent, and moves with each new disturbance, causing a degradation 
in regularity. However, in such cases an oscillatory flow may still exist in the form of 
a repeating sequence of temperature changes. Introduction of a fixed perturbation in 
this case causes another degradation in regularity, which suggests that  the repeating 
sequence arises from disturbances forming a t  more than one location. 

2. Governing equations and boundary conditions 
Assuming the validity of Darcy’s law and the Boussinesq approximation and 

neglecting inertial effects, the governing equations for convective flow through porous 
medium are 

and 

where x, y, and t are the non-dimensional space and time co-ordinates (y vertically 
upward), and 8 and @ are the non-dimensional tiemperature and stream function 
respectively. The Rayleigh number R is defined as 

where a is the dept,h of the porous layer, k is the permeability, K i s  the thermal diffusivity 
of the fluid-saturated medium, v is the kinematic viscosity, and a the coefficient of 
thermal expansion of the fluid, AT is the temperature differential across the region, 
A is the ratio of the volumetric heat capacity of the fluid to that of the saturated 
formation and g is the acceleration due to  gravity. 

The characteristic length and time used in non-dimensionalizing are a and a 2 / K  

respectively. The non-dimensional temperature is defined as : 

T-To 6 = -  
Tl - To’ (4) 

where To and Tl are the maximum and minimum boundary temperatures. 
The choice of boundary configuration is extremely important since the presence of 

confining boundaries strongly affects the form of the oscillatory solution. By restricting 
the wavelength of any flow pattern to  lie within two confining vertical boundaries, the 
‘box ’ configuration permits the persistence of a flow a t  a particular wavelength that 
would have been unstable in favour of  another wavelength, had it been possible for 
the more favoured to ‘fit’ between the boundaries. Thus, to  isolate the influence of 
the boundaries, a single aspect ratio is selected and only a square cell is considered. 
The boundary conditions are kept as simple as possible, i.e. impermeable boundaries 
on all sides, constant (high) temperature boundary a t  the bottom, constant (low) 
temperature boundary a t  the top, and adiabatic boundaries to  the sides. This con- 
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FIGURE 1. Boundary conditions. 

figuration is the one most frequently investigated experimentally and numerically so 
far, and allows the problem to be examined with reference to the greatest volume of 
former work. The problem boundaries are illustrated in figure 1.  

I n  order to investigate the position of evolution of the instability of the thermal 
boundary layer, a perturbation is introduced a t  the constant temperature lower 
boundary. This is achieved simply, by raising the temperature at a single point by 
10 :(, (i.e. to B = 1.1). I n  analytical terms this would correspond to  a ‘spike’ a t  that 
point. However since the solution is achieved using a numerical solution on a finite 
difference mesh the perturbation should be viewed rather as a ‘triangle ’. 

The initial conditions are obtained using a ‘stirred’ flow. Given an initially cellular 
motion in the flow region of 

then for zero net convective transfer the temperature distribution from (1) will be 

@ = f,sinmrxsinnry, (51 

B = (1-y)-  + n2) cos mmx sin nny. 
m 

To obtain an initial motion that is asymmetric with respect to  the hot and cold 
boundaries, the initial conditions can be specified as the superposition of two forcing 
functions as in equations (5) and (6), with different values of m in each (at least one 
of which should be even). 

3. Numerical solution 
Two separate numerical procedures are used here with essentially comparable 

results. The first uses the methods described in Horne & O’Sullivan (1974, 1978), 
namely the non-iterative, odd-even reduction technique (Busbee, Golub & Nielson 
1970) for the solution of the stream-functioning equation (1 ), and fourth-order Arakawa 
differencing (Arakawa 1966) for the representation of the advection terms in the energy 
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equation (2). The space differencing is fourth-order accurate right to  the boundaries, 
as in Horne & O’Sullivan (1978). The accuracy of the time differencing has been 
improved by using an approximate form of the Crank-Nicolson technique obtained 
by combining a forward time differencing step and a leap-frog differencing step. 
The temperature and stream-function distribution a t  a half time-step forward are 
calculated using forward differencing, then these values used to  recalculate the rate 
of change a t  the half time step point. This rate of change is then used to determine 
the temperature and stream function one full time step ahead of the original one. 
This technique avoids the ‘ time-splitting ’ instability encountered with leap-frog 
differencing by itself (Orszag & Israeli 1974). 

The second procedure involves methods previously used in Caltagirone (1974, 1975), 
namely the alternating direction implicit (ADI) method for the solution of both the 
energy and stream-function equations, forming each in terms of an unknown Laplacian 
using central differences. To maintain accuracy of the time difference, this method 
solves the energy equation iteratively. 

The mesh size for the first procedure has t o  be one more than a power of two (e.g. 
33 x 33 or 65 x 65), for Rayleigh numbers around 500, a 33 x 33 mesh produces identical 
results, globally and locally to a 65 x 65 mesh. The second procedure produces com- 
parable results with a 48 x 48 mesh. Time steps used are of order 0.0002 with the non- 
dimensional time as defined in § 2 .  

The details of these two methods have been described previously and are not re- 
peated here. Both methods have demonstrated success in reproducing experimentally 
observed flows (Horne & O’Sullivan 1974; Caltagirone 1974). One motivation for 
conducting this joint study was to compare results obtained with substantially different 
numerical methods. The observed agreement builds confidence in the numerical solu- 
tions, and the cooperative study resulted in worthwhile streamlining of both methods 
of attack. It should be emphasized that the appearance of irregular fluctuating flows 
in an already nonlinear problem precludes all current analytical techniques and leaves 
physical and numerical experiments as the only alternatives. 

4. Results 
The initial purpose of this study was to pinpoint the location of the evolution of the 

instability in the thermal boundary layer, i.e. the point of origin of a ‘thermal’ in 
the sense used by Sparrow, Husar & Goldstein (1970). It is practically impossible to 
observe the actual birth of an incipient thermal since i t  must reach a certain magnitude 
before becoming apparent, therefore it is necessary to resort to the indirect method, 
perturbing the boundary layer in the vicinity of the anticipated location of the gesta- 
tion and observing the effect. 

An early impression of previously determined flows suggests that  in an essentially 
unicellular oscillatory flow, the thermals originate symmetrically from the centre of 
the upper and lower boundaries. To investigate this matter it is necessary to choose a 
Rayleigh number a t  which the solution is unicellularly oscillatory (in the square cell): 
it must therefore be above 390 in order to  be oscillatory but below 1000 to avoid the 
upset of the solution into multicellular modes. A value of 500 was selected for the set 
of numerical experiments. A temperature anomaly was positioned a t  points x = $, +, 
8, Q and along the lower (heated) boundary and the flow patterns compared to the 
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FIGURE 2. Asymmetric flow pattern caused by the introduction of a boundary temperature 
perturbation a t  the point (2, 0) into an initially symmetric flow. Rayleigh number is 500, solid 
lines are isotherms, broken lines are streamlines. 

Position of Arrival time at ( A )  Arrival time at  (B)  
anomaly Mean Standard deviation Mean Standard deviation 

no anomaly 0.00973 0.0007 1 0.00973 0.0007 1 
0.00979 0*00060 0.00975 0.00056 
0.00969 0.00079 0.00969 0.00084 
0-00970 0.00062 0.00970 0.00062 

8 0.00964 0-00086 0.00994 0.00130 

a 
i3 * 
4 0.00945 0.00236 0.00965 0~00210 

TABLE 1 .  Mean and standard deviations of arrival times at  positions 
( A )  in ascending flow, (B)  in descending flow, at  a Rayleigh number of 500 

case where there was no temperature anomaly. The initial motion imposed on the 
flow was symmetric. 

In  every case the flow exhibited the unicellular fluctuating behaviour, periodically 
emitting ‘thermals’ from the upper and lower boundary layers. The nature of this 
flow is illustrated in figure 2. However the regularity of the flow differed depending 
on the position of temperature anomaly on the boundary. This variation in regularity 
can best be seen by comparing the statistics of the series of the time periods between 
successive thermals. Choosing a fixed point in the path of the ‘thermals’, the passage 
of a ‘thermal ’ is marked as a relative maximum in temperature in the rising flow or a 
relative minimum in temperature in the descending flow. Table 1 summarizes the 



Natural convection in a porous medium 39 1 

( i )  (ii) (iii) (iv) 

0.0099 0.0096 0.0099 0.0108 
0.0096 0.0099 0.0102 0*0090 
0.0093 0.0093 0.0096 0.0087 
0.0108 0.0108 0.0099 0.0117 
0.0090 0*0090 0.0093 0.0084 
0.0096 0.0096 0.0099 0.0096 

Mean 0.0097 0.0097 0.0098 0.0097 
Standard deviation 0.00062 0.00062 0.0003 1 0.00 130 

TABLE 2. Time intervals between successive extreme in ( i )  temperature at ( A ) ,  (ii) temperature 
at (B) ,  (iii) Nusselt number, (iv) maximum stream function. Rayleigh number 500, anomaly at 
x = &  

FICURE 3. As in figure 2 but with boundary temperature perturbation 
at  the point (4, 0) .  In this case symmetry persists. 

mean and standard deviation of the time separation between arrivals a t  each of two 
points in the flow, one in the ascending flow and one in the descending flow. These two 
points are indicated in figure 2 .  There are also other means of signalling the ‘flight’ 
of a ‘thermal’, since each is accompanied by an increase in the maximum stream 
function in the region, and the arrival of a ‘thermal’ a t  the upper boundary caweR 
a relative maximum in the Nusselt number a t  that  boundary. Table 2 shows typical 
sequences of time intervals between successive ‘thermals’, measured in four separate 
ways. In  this particular case the anomaly is a t  x = 4, and it is seen that although not 
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0 1  I I I 1 i 
0.15 0.16 0.17 0.18 0.19 0.20 

FIGURE 4. Oscillation of temperatures a t  points A and B. Asymmetrically initiated 
flow, Rayleigh number 500, no boundary temperature perturbations. 

t 

completely regular, there is only a very small deviation from the mean arrival interval 
(variations of less than 0.00025 are not significant since this is the resolution of the 
time step). 

It is observed in this first set of results that  the time sequence of ‘ thermal ’ evolutions 
is essentially unaffected by temperature anomalies a t  the boundary which lie a t  x = 4 
or downstream of that position. On the other hand, when the anomaly is upstream of 
x = +, the symmetry between the ascending and descending ‘thermals’ is lost, the 
mean time interval is altered, and the deviation of the intervals from the mean 
increases. Figure 2 shows the loss of symmetry caused by the anomaly a t  x = $ (i.e. 
an upstream anomaly). This may be compared with figure 3 in which the anomaly is 
a t  x = 4 (i.e. downstream); in this case the symmetry persists. 

The suggestion is therefore that ‘thermals’ originate a t  x = 3 on the upper and 
lower boundaries. 

I n  this first set of results the flows are originally set in motion by an induced move- 
ment which is symmetric and, except in the cases noted already, remain symmetric 
throughout a long period of time (up t o  20 oscillations were calculated). It is a property 
of numerical solutions that noise is less than in physical or experimental situations, 
and it is therefore not known whether this persistence of symmetry is physically 
realistic or is an artifice of the noiseless numerical calculation together with the 
‘perfect ’ symmetric initial condition. This is particularly significant where explicit 
and direct solution techniques are used since even the errors are propagated sym- 
metrically. This question may be investigated by repeating the experiments with an 
asymmetrically started motion. 

Starting with an initial perturbation that is not symmetric in x, the flow remains 
asymmetric, with widely varying fluctuating periods in both the rising and descending 
portions of the flow. For example, for an asymmetrically started flow with no tem- 
perature anomaly, the time period of successive temperature maxima has a mean 
value of 0.00967 and a standard deviation of 0.001 78 a t  the point in the ascending 
flow, and mean and standard deviation of 0.009 70 and 0.001 63 respectively in the 
descending flow. However, there is a strong negative correlation between the rising and 
falling disturbances, for example, the rising ‘thermal ’ shows cycles of two shorter 
arrival times and three longer ones, while the falling ‘thermal’ shows cycles of two 
longer arrival times and three shorter ones. This behaviour is illustrated in figure 4. 
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In  other cases, using a different initial asymmetric disturbance, the flow takes up the 
usual, more or less regular cycle. 

In  these asymmetrically started cases, introducing a temperature anomaly a t  the 
mid-point of the heated lower boundary affects the flow considerably. The disturbance 
continues for a long period of time (more than 0.2) without forming into a regular 
pattern, and has time periods in the ascending flow with mean and standard deviation 
0*0110 and 0.0036 respectively; in the descending flow these values are 0.0122 and 
0.0032. 

Extending the analysis to other Rayleigh numbers, a t  the lower Rayleigh number 
of 400 a symmetrically initiated flow shows only a small amplitude oscillation (a 
change in temperature of about 0-02 a t  point A ,  and a variation in Nusselt number 
between 5-32 and 5.23) with a mean period of 0.01 15. On the other hand, an asymmetric- 
ally started flow has a much larger amplitude oscillation (temperature change of order 
0-06, Nusselt number varying between 5.50 and 5.23) with a mean period of 0.0140. 
At the higher Rayleigh number of 700, a symmetrically initiated flow quickly loses 
its symmetry and settles into an oscillatory flow with mean period 0.054 and Nusselt 
number variation between 9.46 and 6.94. On the other hand an asymmetrically 
initiated flow separates into two cells of differing size, the larger one oscillating with 
mean period 0.0060 and the smaller one steady. The Nusselt number varies between 
7-8 and 8, but the amplitude decreases to settle on a value in the vicinity of 7 .7  as 
the cells equilibrate in size and the oscillations decrease. It is worthy of note that there 
is no discernable change in the period of the oscillations as the cell decreases in size 
and the oscillations reduce in amplitude. 

5. Conclusions 
In  a flow which is initially symmetric, undergoing unicellular oscillatory convection 

in a closed box, the location of the initiation of instability of the thermal boundary 
layers, giving rise to the evolution of ‘thermals’, takes place half way along the 
boundary. The symmetry of the flow can be upset by perturbations upstream of this 
point. I n  the case of an asymmetric flow the point of initiation is not fixed and the 
regularity of the oscillatory convection is degraded. However there may exist another 
regular sequence based on a series of ‘thermals’ that  repeat after a certain number 
(five for a Rayleigh number of 500). The introduction of a fixed perturbation in such 
a case interrupts the sequence of initiation locations and prevents the oscillations 
from ever becoming regular. 

It has also been seen that there exist more than one stable set of cyclic disturbances - 
two each have been observed for the Rayleigh numbers 400, 500 and 700. With the 
exception of the Rayleigh number 700 in which no persistently symmetrical flow was 
observed, the more symmetric of the two alternatives had a shorter time period and a 
smaller amplitude in both Nusselt number and temperature variation a t  a point. It is 
clear then that the symmetric arrangement of points of gestation of ‘thermals’ allows 
the shortest path for one ‘thermal’ to  trigger its successor, resulting in an early flight 
and consequent smaller magnitude of disturbance. The appearance of either one flow 
or the other depends on the original movement in the region, another example of the 
dependence of nonlinear flows on initial conditions, as noted previously by Horne & 
O’Sullivan (1974) and also by Straus & Schubert (1979). The difference in mechanism 
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between the alternative cycles arises from differences in the location of the initiation 
points of ‘thermals’, and the number and complexity of alternatives increases with 
Rayleigh number as the supercritical extent of the thermal boundary layer increases. 
The different cycles appear stable to internal perturbations but can be interrupted 
externally (in this case by introducing the temperature anomaly a t  the boundary). 
These alternative flows might therefore be classed as ‘weak ’ alternatives as opposed 
to the ‘strong’ alternatives, steady or oscillatory (Horne & O’Sullivan 1974) and two 
dimensional or three dimensional (Horne 1979) which cannot be so easily perturbed. 
The appearance of symmetrical and non-symmetrical alternatives has also been noted 
in a recent paper by Straus & Schubert (1980). 

It is worthwhile noting the difficulty that arises in the mathematical solution of 
this problem. This nonlinear problem has a plethora of possible alternative flow regimes 
and histories depending on the conditions applied initially and subsequently. Therefore 
the ‘too perfect ’ conditions that are achieved using analytical or numerical techniques 
(paradoxically the most accurate ones in particular) may give rise to  other artificial 
solutions that are divorced from the flows observed in ‘noisy’ physical systems. 
Another example of this is easily observed in the simpler onset of a convection problem 
- the numerical techniques used here will hold B conduction solution for indefinite 
periods at Rayleigh numbers well above critical in the absence of the small perturba- 
tion necessary for the onset of a convective flow. It is perhaps time to admit that 
mathematical solutions to nonlinear problems must of necessity include non-deter- 
ministic forcing effects in order to  avoid solutions mathematically correct but 
physically unlikely. 

This work was initiated while one of the authors (Horne) was supported by the 
Stanford Institute of Energy Studies. This cooperative research has been made 
possible by FrenchIEnglish translations with the assistance of Mmes P. Arditty and 
Y. Kawashima. 
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